203 research outputs found

    Fast Fourier Optimization: Sparsity Matters

    Full text link
    Many interesting and fundamentally practical optimization problems, ranging from optics, to signal processing, to radar and acoustics, involve constraints on the Fourier transform of a function. It is well-known that the {\em fast Fourier transform} (fft) is a recursive algorithm that can dramatically improve the efficiency for computing the discrete Fourier transform. However, because it is recursive, it is difficult to embed into a linear optimization problem. In this paper, we explain the main idea behind the fast Fourier transform and show how to adapt it in such a manner as to make it encodable as constraints in an optimization problem. We demonstrate a real-world problem from the field of high-contrast imaging. On this problem, dramatic improvements are translated to an ability to solve problems with a much finer grid of discretized points. As we shall show, in general, the "fast Fourier" version of the optimization constraints produces a larger but sparser constraint matrix and therefore one can think of the fast Fourier transform as a method of sparsifying the constraints in an optimization problem, which is usually a good thing.Comment: 16 pages, 8 figure

    A Probabilistic Model For the Time to Unravel a Strand of DNA

    Get PDF
    A common model for the time σL (sec) taken by a DNA strand of length L (cm) to unravel is to assume that new points of unraveling occur along the strand as a Poisson process of rate λ 1/(cm x sec) in space-time and that the unraveling propagates at speed v/2 (cm/sec) in each direction until time σL. We solve the open problem to determine the distribution of σL by finding its Laplace transform and using it to show that as x = L2λ/v → ∞, σL is nearly a constant:σL=1λvlogL2λv12We also derive (modulo some small gaps) the more precise limiting asymptotic formula: for - ∞ \u3c θ \u3c ∞,PσL\u3c1λvψ12[log(L2λv)]+θψ12[log(L2λv)]→e-e-θwhere ψ is defined by the equation: ψ(x) = log ψ(x)+x, x⩾1. These results are obtained by interchanging the role of space and time to uncover an underlying Markov process which can be studied in detail

    Optimal pupil apodizations for arbitrary apertures

    Full text link
    We present here fully optimized two-dimensional pupil apodizations for which no specific geometric constraints are put on the pupil plane apodization, apart from the shape of the aperture itself. Masks for circular and segmented apertures are displayed, with and without central obstruction and spiders. Examples of optimal masks are shown for Subaru, SPICA and JWST. Several high-contrast regions are considered with different sizes, positions, shapes and contrasts. It is interesting to note that all the masks that result from these optimizations tend to have a binary transmission profile.Comment: 16 pages, 10 figure

    Estimates of the optimal density and kissing number of sphere packings in high dimensions

    Full text link
    The problem of finding the asymptotic behavior of the maximal density of sphere packings in high Euclidean dimensions is one of the most fascinating and challenging problems in discrete geometry. One century ago, Minkowski obtained a rigorous lower bound that is controlled asymptotically by 1/2d1/2^d, where dd is the Euclidean space dimension. An indication of the difficulty of the problem can be garnered from the fact that exponential improvement of Minkowski's bound has proved to be elusive, even though existing upper bounds suggest that such improvement should be possible. Using a statistical-mechanical procedure to optimize the density associated with a "test" pair correlation function and a conjecture concerning the existence of disordered sphere packings [S. Torquato and F. H. Stillinger, Experimental Math. {\bf 15}, 307 (2006)], the putative exponential improvement was found with an asymptotic behavior controlled by 1/2(0.77865...)d1/2^{(0.77865...)d}. Using the same methods, we investigate whether this exponential improvement can be further improved by exploring other test pair correlation functions correponding to disordered packings. We demonstrate that there are simpler test functions that lead to the same asymptotic result. More importantly, we show that there is a wide class of test functions that lead to precisely the same exponential improvement and therefore the asymptotic form 1/2(0.77865...)d1/2^{(0.77865...)d} is much more general than previously surmised.Comment: 23 pages, 4 figures, submitted to Phys. Rev.

    Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks

    Full text link
    Deep neural networks have emerged as a widely used and effective means for tackling complex, real-world problems. However, a major obstacle in applying them to safety-critical systems is the great difficulty in providing formal guarantees about their behavior. We present a novel, scalable, and efficient technique for verifying properties of deep neural networks (or providing counter-examples). The technique is based on the simplex method, extended to handle the non-convex Rectified Linear Unit (ReLU) activation function, which is a crucial ingredient in many modern neural networks. The verification procedure tackles neural networks as a whole, without making any simplifying assumptions. We evaluated our technique on a prototype deep neural network implementation of the next-generation airborne collision avoidance system for unmanned aircraft (ACAS Xu). Results show that our technique can successfully prove properties of networks that are an order of magnitude larger than the largest networks verified using existing methods.Comment: This is the extended version of a paper with the same title that appeared at CAV 201

    Spiderweb Masks for High-Contrast Imaging

    Get PDF
    Motivated by the desire to image exosolar planets, recent work by us and others has shown that high-contrast imaging can be achieved using specially shaped pupil masks. To date, the masks we have designed have been symmetric with respect to a cartesian coordinate system but were not rotationally invariant, thus requiring that one take multiple images at different angles of rotation about the central point in order to obtain high-contrast in all directions. In this paper, we present a new class of masks that have rotational symmetry and provide high-contrast in all directions with just one image. These masks provide the required 10^{-10} level of contrast to within 4 lambda/D, and in some cases 3 lambda/D, of the central point, which is deemed necessary for exosolar planet finding/imaging. They are also well-suited for use on ground-based telescopes, and perhaps NGST too, since they can accommodate central obstructions and associated support spiders.Comment: 20 pages, 9 figures, to appear in Ap

    Prior reduced fill-in in solving equations in interior point algorithms

    Full text link
    The efficiency of interior-point algorithms for linear programming is related to the effort required to factorize the matrix used to solve for the search direction at each iteration. When the linear program is in symmetric form (i.e., the constraints are Ax b, x >= 0), then there are two mathematically equivalent forms of the search direction, involving different matrices. One form necessitates factoring a matrix whose sparsity pattern has the same form as that of (AAT). The other form necessitates factoring a matrix whose sparsity pattern has the same form as that of (ATA). Depending on the structure of the matrix A, one of these two forms may produce significantly less fill-in than the other. Furthermore, by analyzing the fill-in of both forms prior to starting the iterative phase of the algorithm, the form with the least fill-in can be computed and used throughout the algorithm. Finally, this methodology can be applied to linear programs that are not in symmetric form, that contain both equality and inequality constraints.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30071/1/0000441.pd
    • …
    corecore